Chemometrics (Multivariate Statistics)

Target group/prerequisites

Participants are expected to have knowledge of basic statistics, e.g. hypothesis testing, correlation and linear regression, and experience using R and RStudio.

Course design

Each day consists of lectures in the morning and practicals using R in the afternoon.

Program topics

Day 1: Data pre-treatment, PCA and PCR Discussion of different data pre-treatment methods e.g. centering, autoscaling, pareto scaling and range scaling. Data exploration using Principal Component Analysis (PCA) and regression using the principal components from PCA in Principal Component Regression, PCR.

Day 2: Modern regression techniques and model validation Discussion of regression methods for high dimensional data: Partial Least Squares (PLS, a technique similar to PCR but with improvements) and regularized regression (ridge/lasso). Ways of assessing model accuracy will also be discussed.

Day 3: Clustering and classification; k-means, hierarchical clustering, LDA and PLS-DA Discussion of cluster analysis: choice of similarity measure, agglomerative methods, divisive methods, k-means & hierarchical clustering.

Date & duration:

10, 11 and 12 June 2020

Study load:

The study load of this course is 1.5 ECTS credits.

Venue:

Details will be announced later.

Costs:

These statistics courses are primarily organised for VLAG PhD candidates. If we have places left, others are welcome to join the courses.

PhD candidates affiliated with VLAG/WUR * 225 €
All other PhD candidates 450 €
Postdoc / staff from VLAG 450 €
Postdoc / staff not affiliated with VLAG 625 €
Professionals / Non academics 1200 €

Costs includes material, tea/coffee and lunches.
* VLAG/EPS/PE&RC/WASS/WIAS/WIMEK PhD candidates with an approved TSP.

Registration:

For registration click here