Chemometrics (Multivariate Statistics)

Target group/prerequisites

Participants are expected to have knowledge of basic statistics, e.g. hypothesis testing, correlation and linear regression, and experience using R and RStudio.

Course design

Each day consists of lectures in the morning and practicals using R in the afternoon.

Program topics

Day 1: Data pre-treatment, PCA and PCR Discussion of different data pre-treatment methods e.g. centering, autoscaling, pareto scaling and range scaling. Data exploration using Principal Component Analysis (PCA) and regression using the principal components from PCA in Principal Component Regression, PCR.

Day 2: Modern regression techniques and model validation Discussion of regression methods for high dimensional data: Partial Least Squares (PLS, a technique similar to PCR but with improvements) and regularized regression (ridge/lasso). Ways of assessing model accuracy will also be discussed.

Day 3: Clustering and classification; k-means, hierarchical clustering, LDA and PLS-DA Discussion of cluster analysis: choice of similarity measure, agglomerative methods, divisive methods, k-means & hierarchical clustering.

Date & duration:

June 2021

Study load:

The study load of this course is 1.5 ECTS credits.


Details will be announced later.


PhD candidates affiliated with VLAG/WUR * 225 €
All other PhD candidates 450 €
Postdoc / staff from VLAG 450 €
Postdoc / staff not affiliated with VLAG 625 €
Professionals / Non academics 1200 €

Costs includes material, tea/coffee and lunches.
* VLAG/EPS/PE&RC/WASS/WIAS/WIMEK PhD candidates with an approved TSP.


For registration click here

Cancellation policy:

You may cancel free of charge up to four weeks before the start of the course. After this date you will be charged the University fee, unless you can find someone to replace you in the course and supply the course coordinator with the name and contact information of your replacement.


For more information please contact Suzanne van der Wielen